D. mojavensis Chain Track Settings
 
D. mojavensis (Apr. 2014 (GEP/DmojImproved)) Chained Alignments   (All Comparative Genomics tracks)

Display mode:   

Color track based on chromosome:  on off

Filter by chromosome (e.g. chr10):

Display data as a density graph:

View table schema
Data last updated at UCSC: 2022-10-20

Description

This track shows D. mojavensis/D. melanogaster genomic alignments using a gap scoring system that allows longer gaps than traditional affine gap scoring systems. It can also tolerate gaps in both D. mojavensis and D. melanogaster simultaneously. These "double-sided" gaps can be caused by local inversions and overlapping deletions in both species. The D. mojavensis sequence is from the Apr. 2014 (GEP/DmojImproved) (DmojImproved) assembly.

The chain track displays boxes joined together by either single or double lines. The boxes represent aligning regions. Single lines indicate gaps that are largely due to a deletion in the D. mojavensis assembly or an insertion in the D. melanogaster assembly. Double lines represent more complex gaps that involve substantial sequence in both species. This may result from inversions, overlapping deletions, an abundance of local mutation, or an unsequenced gap in one species. In cases where there are multiple chains over a particular portion of the D. melanogaster genome, chains with single-lined gaps are often due to processed pseudogenes, while chains with double-lined gaps are more often due to paralogs and unprocessed pseudogenes. In the "pack" and "full" display modes, the individual feature names indicate the chromosome, strand, and location (in thousands) of the match for each matching alignment.

Display Conventions and Configuration

By default, the chains to chromosome-based assemblies are colored based on which chromosome they map to in the aligning organism. To turn off the coloring, check the "off" button next to: Color track based on chromosome.

To display only the chains of one chromosome in the aligning organism, enter the name of that chromosome (e.g. chr4) in box next to: Filter by chromosome.

Methods

Transposons that have been inserted since the D. mojavensis/D. melanogaster split were removed, and the resulting abbreviated genomes were aligned with blastz. The transposons were then put back into the alignments. The resulting alignments were converted into axt format and the resulting axts fed into axtChain. AxtChain organizes all the alignments between a single D. mojavensis and a single D. melanogaster chromosome into a group and makes a kd-tree out of all the gapless subsections (blocks) of the alignments. Next, maximally scoring chains of these blocks were found by running a dynamic program over the kd-tree. Chains scoring below a threshold were discarded; the remaining chains are displayed here.

Credits

Blastz was developed at Pennsylvania State University by Minmei Hou, Scott Schwartz, Zheng Zhang, and Webb Miller with advice from Ross Hardison.

Lineage-specific repeats were identified by Arian Smit and his program RepeatMasker.

The axtChain program was developed at the University of California at Santa Cruz by Jim Kent with advice from Webb Miller and David Haussler.

The browser display and database storage of the chains were generated by Robert Baertsch and Jim Kent.

References

Chiaromonte, F., Yap, V.B., Miller, W. Scoring pairwise genomic sequence alignments. Pac Symp Biocomput 2002, 115-26 (2002).

Kent, W.J., Baertsch, R., Hinrichs, A., Miller, W., and Haussler, D. Evolution's cauldron: Duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci USA 100(20), 11484-11489 (2003).

Schwartz, S., Kent, W.J., Smit, A., Zhang, Z., Baertsch, R., Hardison, R., Haussler, D., and Miller, W. Human-Mouse Alignments with BLASTZ. Genome Res. 13(1), 103-7 (2003).